
Getting Started

VTune

Intel’s Visual Tuning Environment for
Windows* 95 and Windows NT* Developers

Order Number: 657001-003

Information in this document is provided in connection with Intel products. No license, express or

implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.

Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no

liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use

of Intel products including liability or warranties relating to fitness for a particular purpose,

merchantability, or infringement of any patent, copyright or other intellectual property right. Intel

products are not intended for use in medical, life saving, or life sustaining applications. Intel may

make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility

whatsoever for conflicts or incompatibilities arising from future changes to them.

The various processors may contain design defects or errors known as errata which may cause the

product to deviate from published specifications. Current characterized errata are available on

request.

Copies of documents which have an ordering number and are referenced in this document, or other

Intel literature, may be obtained from:

Intel Corporation

P.O. Box 7641

Mt. Prospect IL 60056-764

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun

Microsystems, Inc. in the United States and other countries.

* Third-party brands and names are the property of their respective owners.

Copyright 1997. Intel Corporation. All rights reserved.

iii

Contents

VTune: An Overview... 1

Hardware Requirements .. 4

Software Requirements ... 4

Installation .. 6

Starting VTune.. 9

Getting Online Help in VTune.. 11

The VTune Project .. 13
The Project Wizard..13
Tips on Managing Projects ..14

Key Features of VTune... 14
The Sampler..15
The Java* Call Graph..17
The Code Analyzer..18
The Code Coach ...20
Static Assembly Code Analyzer ..21
Dynamic Assembly Analyzer ...23

Getting Started: VTune 1

VTune: An Overview
Welcome to VTune, Intel’s Visual Tuning Environment. Designed to
provide an integrated tuning environment for Windows* 95 and Windows
NT* systems, VTune helps you do the following:

Analyze performance through Sampling and Hotspot Analysis
• Sample and display a system-wide view of software activity and CPU

time distribution.
• Determine which modules are taking the most CPU time, including

Java* classes compiled with the Just-in-Time (JIT) compiler,
executables, DLLs, and VXDs.

• Analyze the hotspots in these modules, display the source code, and
determine performance problems at source and assembly code levels.

 Profile your Java* source code and analyze the data
• In a compatible Java environment, profile your Java code, analyze the

data, and generate a Call Graph.

 Analyze performance through Code Analysis.
• Perform Static Assembler Analysis of the functions or basic blocks of

code in your application without executing or sampling your
application.

• Get a list of functions with their respective addresses for quick access
to your code.

• Get summary information associated with each function.

 Analyze your C, Fortran, or Java source.
• Use VTune’s Coach to analyze C, Fortran, or Java source code and

get high-level language optimization advice.

2 Getting Started: VTune

 Determine performance problems at the assembly code level
using the Static Assembly Analyzer.
• See how each assembly instruction is processed in the different

decode units of the Pentium® Pro and Pentium II processors. (Each
assembly instruction on the Pentium Pro and Pentium II processors is
composed of one or more micro-ops.)

• Determine how many clocks each assembly instruction takes to
execute and how many of them were incurred due to penalties, plus
identify instructions that did not pair and the reasons why they did not
pair on Pentium processors and Pentium processors with MMX™
technology.

 Fine-tune sections of your code using the Dynamic Assembly
Analyzer.
• Regardless of the processor in the system you are currently running,

dynamically simulate a block of assembly code and discover events
that degrade performance on the Pentium and Pentium with MMX
technology processors, such as missed cache accesses, BTB misses,
and misaligned data.

Getting Started: VTune 3

 What’s new in VTune 2.5

 VTune 2.5 offers the following new features to help you analyze the
performance of your Java* application:

 Sampling and Hotspot Analysis for JIT-compiled Java
modules

 In a compatible Java environment, you can sample your application for
Java hotspots. The Modules Report of software activity will now include
the CPU time spent in the JIT-compiled Java module, Java VM, and JIT.
The Hotspots view for the Java module displays the CPU time spent in
the most active classes or methods in the module.

 Call Graph generation for Java methods

 You can use VTune to profile your Java code and generate a Call Graph,
graphically displaying the threads that were created and the parent and
child methods that were called during the profiling session.

 Coach to provide tuning advice for Java source code

 If the Java source code is available, VTune’s Coach now provides tuning
advice for your Java source code.

4 Getting Started: VTune

Hardware Requirements
 Following are the minimum hardware requirements for installing VTune:

• Intel486™ microprocessor (Pentium® processor recommended)
• 16MB of RAM (32MB recommended)
• 40MB of disk space on the local or network drive you specify for

VTune files. On Windows* NT*, VTune output files are created only
on the local drive

• An additional 10MB of disk space on your local Windows System
drive

• CD-ROM Drive

 The additional disk space on your local Windows drive is required to
install the DLLs and OCXs that VTune requires in the
windows\system directory.

 NOTE. You will require more disk space if you install the rest of the
software available on the VTune CD, such as the Intel Performance
Library Suite, C/C++ Compiler plug-in, Fortran compiler plug-in, Intel
Architecture Tutorials, and reference manuals.

 Requirements for Event-Based Sampling
• Event-Based Sampling (EBS) uses internal CPU events to sample

your application and is supported by VTune on Pentium Pro and
Pentium II processors.

 NOTE. You must use a Pentium Pro or a Pentium II processor for Event-
Based Sampling (EBS) since these processors have a built-in capability
for EBS. Intel no longer distributes custom EBS sockets for Pentium
processor-based systems.

Getting Started: VTune 5

Software Requirements
 VTune runs on either Windows* 95 or Windows NT* (Version 3.51 or
higher) operating systems. Windows 3.x and Windows NT 3.5 are not
supported.

 Java* Environments Supported

 VTune 2.5 currently supports the following Java environments:

• Microsoft* VM, Build 2228 and above. This VM is used in the Java
SDK 2.0 Environment and Internet Explorer 4.0.

• Microsoft SDK 1.5 for Java with Intel JIT. Use the Switch JIT utility
provided in the VTune program group to setup the Intel JIT.

NOTE. Refer to http://developer.intel.com/design/perftool/vtune for more
up-to-date information about the different Java environments supported.

6 Getting Started: VTune

Installation
Follow the instructions below to install VTune on systems running
Windows* 95 or NT*.

To Install VTune on Windows 95 or Windows NT
(3.51 or higher)

1. Insert the VTune CD into your CD ROM drive.
The AutoRun feature will execute automatically. The installation
window appears prompting you to install VTune and other software
available on the CD.

2. If the AutoRun feature does not execute, then execute AutoRun
manually from your command prompt, e.g. e:/autorun.exe

3. Click on the VTune icon to install VTune.
4. Follow the instructions the setup program prompts you through.

NOTES.

1. You must have administrator privileges to install VTune on
Windows NT.

2. To do sampling on Windows NT, you must either have administrator
rights or have the "Profile system performance right" assigned to
your user account by the administrator. Otherwise, VTune will not be
able to collect samples.

3. If the User ID of the person using VTune is different from the User ID
of the person who installed VTune, then the person using VTune must
double-click on "Update User’s VTune Registry" icon in the VTune
group when they login for the first time.

4. Windows NT 4.0 Beta releases are NOT supported and VTune does
not support Checked Build on Windows NT.

Getting Started: VTune 7

Upgrading to VTune 2.5:
If you have VTune 2.4 or an earlier version installed on your system,
follow the instructions below to install VTune 2.5.

To upgrade to VTune 2.5:
• Run the setup.exe program from the VTune CD.

The setup program will prompt you through the installation process.

NOTE. If you have 2.11 or earlier version installed, before you upgrade
to 2.5 or later version of VTune, use the Export Project command on the
VTune File menu to save the registry entries for your old projects into
files with .vts extensions. You can also use the Registry Editor to save
your project settings. In 2.4 and later versions, VTune automatically
saves a project’s settings into a .vts file.

NOTE. Use the VTune Uninstall program in the VTune program group
only if you wish to remove all the project files (*.vts) you created as
well as all the files VTune installed on your system. The Uninstall
program, does not, however, delete VTune output files (*.ldb and
*.mdb).

8 Getting Started: VTune

Installing Other Intel Architecture Software from
the VTune CD

The VTune CD includes other Intel software products, such as the Intel
Architecture Tutorials, online reference manuals, the C/C++ Compiler
plug-in, the Fortran compiler plug-in, and the Performance Library Suite.

These products provide you with the tools to optimize your code for the
Intel Architecture and to help you understand the Intel Architecture
concepts and terminology used by VTune. Note, however, that VTune
itself does not require these tools to be installed in order to execute.

To install the other software on the VTune CD
1. Run the Autorun.exe program from the VTune CD.

The installation window appears, prompting you to install the various
software components available on the CD.

2. Click on the appropriate button to install specific software.
3. Follow the instructions the setup program prompts you through.

Refer to the Release Notes in each of these product directories for more
information.

Getting Started: VTune 9

Starting VTune
To start VTune, double-click on the VTune icon on the Windows*
95/NT* program menu or program group.

When you invoke VTune for the first time, the Assistant appears,
prompting you with options about what to do next. Select the “Open the
last project” option in the Assistant window to load a sample project
called VTundemo. Use the Assistant's directions to run this project to
familiarize yourself with the VTune project settings and sessions.

The VTune Assistant

The VTune Assistant is designed to introduce you to the various aspects
of VTune and quickly teach you how to use the interface to tune your
applications. By default, the Assistant appears every time you invoke
VTune. The initial Assistant window prompts you to create a new project
or open an existing one. You can click on any of the icons in the Assistant
window to invoke a function. Depending on your selection, the
subsequent Assistant windows display tips about the specific function or
VTune window you invoke.

Related Online Help Topics

Topics in the “Overviews” section of the Help Contents

The VTune Assistant

10 Getting Started: VTune

Online Help Topics to Help You Get Started

Refer to the following Online Help topics for information that will help
you quickly create a VTune project and start using VTune for tuning your
application.

Topics in the Help Contents
• Before you begin
• Quick Start to Time-Based Sampling (TBS)
• Quick Start to Event-Based Sampling (EBS)
• Java* Environments Supported by VTune
• Quick Start to Sampling your Java Application
• Quick Start to Generating a Call Graph of Java Methods

 Topics in the “Overviews” section of the Help Contents
• The Project Wizard: An Overview
• The VTune Assistant: An Overview
• Java Support in VTune: An Overview
• Call Graph: An Overview
• Call List: An Overview

Getting Started: VTune 11

Getting Online Help in VTune
 Documentation for VTune is provided in the form of Windows* 95/NT*
Online help. VTune has extensive context-sensitive help built into the
interface. Since the Online help is the main source of information on
VTune, effort has been made to make the Online help comprehensive.
You can access Online Help from the application in several ways:

 Use the Hints on the toolbar icons.

 Select the VTune window and place your cursor on any icon in the
toolbar to display the hint for that icon.

 Use the right mouse button to invoke the “What's This” help
for any part of the interface.

 “What's This” help provides a brief description of the option, column,
icon, button, graph, or any other part of the interface you click on.

12 Getting Started: VTune

 Use the right mouse click on any column or graph in a VTune
window to display the “What to do now” help topic

 The “What to do now” help topic displays a brief list of the different
functions you can invoke from any VTune form, such as the Modules,
Hotspot, or the Source views.

 Use the button to display the Overview help topic for
the active VTune window.

 You could also use the F1 key.

 Use the F1 key to display help for the Menu commands

 Select the menu command and press the F1 key. VTune displays context-
sensitive help for that command.

 Use the Help Contents and Index

 You can invoke the Help Contents and the Help Index from the Help
menu. Use the “How to” sections of the Help Contents to display step-by-
step instructions.

Getting Started: VTune 13

The VTune Project
 The first step towards using VTune is to define your project. VTune uses
the concept of a “project” to define the configuration options set up for
sampling and analyzing your application. VTune saves your project
settings into a file with a .vts extension.

 The Project Wizard

 VTune provides you with a Project Wizard to help you quickly create a
project and start using VTune for tuning your applications.

 To invoke the Project Wizard:
• Click on the New Project icon on the VTune Assistant window or

on the toolbar.

VTune displays the Project Wizard which prompts you to enter the basic
information required for both Time-Based Sampling and Static Code
Analysis. VTune creates a project with the parameters you specified, uses
default values for other settings, and saves the project with the name of
the program you are analyzing.

You can now click on the Start a Monitor Session icon on the toolbar
to start sampling the hotspots in your application, or click on the View
Code Analysis icon to perform a static analysis of all the functions in
your code.

Tips on the Project Wizard
• When the Wizard prompts you for the name of the program you want

to test, enter the name of an executable (EXE) that will invoke the
module you are interested in, not the name of the module itself (DLL,
VXD, or OCX).

• For Java* programs, specify the name of the application (e.g.
browser, Java applet viewer, etc.) you want to invoke to execute your
Java class file.

14 Getting Started: VTune

Tips on Managing Projects
• If you modified your source code and want to perform a detailed

analysis of the original and the modified versions, create separate
projects and maintain both sets of source code in separate directories.

• Even if you modified and recompiled your application, you can
continue to use the same project if you were concerned only with
system-wide CPU usage or localities of hotspots. Be aware, however,
that the samples collected in earlier sessions may no longer
correspond accurately to the addresses and offsets in the changed
source files. If you open an earlier session, VTune detects the change
in the executable and displays a warning message.

• If you wish to analyze your application’s performance under different
project configurations, create separate projects for each configuration.
Note that you can use one project and rely on the Session IDs and
comments to track the configuration changes.

• If you want to compare multiple HotSpot screens from different
sampling sessions, use the same project. VTune can have only one
project open at a time. All sessions you wish to simultaneously view
must be in the same project.

• Project files created with previous versions of VTune (versions prior
to VTune 2.4) can be opened in VTune only if they are located in the
same directory as they were originally created.

 Related Online Help Topics

 Topics in the Help Contents
• Quick Start to Time-Based Sampling (TBS)
• Quick Start to Event-Based Sampling (EBS)
• Quick Start to Sampling your Java* Application

 Topics in the “Overviews” section of the Help Contents
• The VTune Project
• The Project Wizard

Getting Started: VTune 15

Key Features of VTune

The Sampler

Use VTune’s Sampler to run a "Monitor Session." VTune monitors all
active software on your system, including Java class files, your Windows
applications and DLLs, the operating system, device drivers, and other
application software.

NOTE. In order to have VTune display symbol information for Windows
Operating System modules, it is necessary that you install all the symbols
files from your Win32* SDK or DDK. On Windows* 95, make sure you
install .sys files and, on Windows NT*, .dbg files.

Before you invoke the Sampler:
1. Use the Project Wizard to create a project and specify the application

you want to monitor.

2. Click on the Start Monitor Session icon on the toolbar to start the
monitoring and sampling process.

During the Monitor Session, the VTune Sampler does the
following:
• Executes your application
• At the specified interrupt intervals, collects a sample (32 bytes of

data) of the current instruction address and places it in a buffer
• Writes the sample data to the disk when the buffer is full
• At the end of the specified sampling time, matches the collected

instruction addresses with the modules
• Stores the results in a database

 At the end of the Monitor Session, VTune displays the total number of
samples collected for that session and asks if you would like to analyze
the samples. (If you click OK at the prompt. VTune displays the Modules
Report with a system-wide view of software activity.)

16 Getting Started: VTune

 Tips
• In a compatible Java* environment, VTune also gets the names of

JIT-compiled methods along with their load addresses, sizes, and
debug information from the JIT/VM and writes this data also to a file.

• To display the Hotspots Report with a graphical view of the most
active functions in the module, double-click on a module of interest.

• To display the source code for the hotspot, double-click on a spike
representing a function of interest in the Hotspots graph.

• To invoke the Coach, double-click on a line of C, Fortran, or Java
source code.

• To display the context-sensitive “What's This” help for any part of
the interface, click your right mouse button on that part of the
interface.

 Related Online Help Topics

 Topics in the Help Contents
• “Symbol Files” and “Debug Symbols” in the “Before you Begin”

section
• Quick Start to Time-Based Sampling (TBS)
• Quick Start to Event-Based Sampling (EBS)
• Quick Start to Sampling Java applications

 Topics in the “Overviews” section of the Help Contents
• Time-Based Sampling and Event-Based Sampling
• Monitoring a Java application
• Modules View for JIT-compiled Java methods

 NOTE. If you enabled Call Graph profiling for Java applications,
during the Monitor Session, VTune will also collect profile data for
generating a call graph. See the Help section "Call Graph Profiling" for
more information.

Getting Started: VTune 17

 Java* Call Graph Profiling

 In a VTune compatible Java environment, you can use VTune to profile
your Java application and generate a call graph of Java methods.

 Before you start a Monitor Session, you must enable the Call Graph
Profiling option in the Project Options/Advanced tab. During the Monitor
Session, in addition to collecting Hotspot Analysis data, VTune also
collects Call Graph profiling data.

 During Call Graph profiling, Java methods are instrumented and profiling
code is added to each method so that every time a method is loaded,
VTune is notified. VTune collects the profiling data and stores it in a
.prf file. At the end of the Monitor Session, VTune creates a new entry
in the Sessions view for the Call Graph session.

 When you double-click on the Call Graph entry in the Sessions View,
VTune analyzes the data and generates the call graph. The Call Graph
window displays the following information:

• Every thread that was created.
• The parent methods that were called while a specific thread was in

progress.
• The child methods that were called by the parent methods.
• The number of times a specific method was called.
• The amount of time spent in a specific method.
• The total time spent in a method and in the child methods it called.

 CAUTION. If Call Graph Profiling is enabled, the Monitor Session
becomes intrusive and slows down application execution due to the
instrumentation of the Java methods.

18 Getting Started: VTune

 Related Online Help Topics

 Topics in the “Overviews” section of the Help Contents
• Call Graph Profiling: An Overview

 Topics in the “How To” section of the Help Contents

• To enable Call Graph Profiling

• To analyze a Call Graph session and display a Call Graph of Java*
methods

Getting Started: VTune 19

The Code Analyzer

Use VTune’s Code Analyzer to analyze the performance of your
program (.obj, .exe, or .dll) without sampling.

Before you invoke the Code Analyzer:
1. Use the Project Wizard to create a project and specify the application

you want to monitor.

2. Click on the Code Analyzer icon on the VTune toolbar to start
static code analysis.

VTune analyzes each basic block and function in the program you
specify, creates a database with the results, and displays the results in the
Code Analysis window. It displays summary information about the
performance of each function, including the name, the address, the
number of instructions executed, the percentage of pairing, the total
clocks incurred, and the additional clocks incurred due to penalties on
Pentium® processors and Pentium processors with MMX™ technology.

Tips
• To display the source code for any function or basic block in the

Code Analysis window, double-click on the function or basic block.
• VTune displays source code for any program compiled with the

debug symbols turned on. The debug symbols need not be in the
binary.

• If no source code is available, VTune's Static Assembly Analyzer
disassembles the functions and displays the assembly code.

• To display the What's This help for each column, click your right
mouse button on any column in the Code Analysis window.

 Related Online Help Topics

 Topics in the “Overviews” section of the Help Contents
• Code Analyzer: An Overview

 Topics in the “How To” section of the Help Contents
• Analyzing performance through static code analysis

20 Getting Started: VTune

 The Code Coach

 Use VTune’s Coach to get optimization advice for C, Fortran, or Java*
source code. Once you identify the active functions in your program and
display the source code, you can invoke the Coach to analyze the code
and display advice on how to modify the original code and improve its
performance.

 To invoke the Coach, do one of the following from the source
view:
• Double-click on a line of C, Fortran, or Java code

• Or select a loop or a function and then click on the Coach icon on
the source view toolbar.

 For C and Fortran source code, the Coach prompts you to specify the
Makefile options, the Manual options, or a preprocessed file. It uses the
Makefile or Manual options to complete the source code before it
analyzes its performance, searches for optimization advice in the code,
and displays the advice. If a preprocessed (.i) file is specified, the
Coach can use that to analyze the performance of your source code.

 Tips
• Click on the Help button next to each optimization displayed by the

Coach to invoke the context-sensitive help with examples of original
and optimized code.

 Related Online Help Topics

 Topics in the “Overviews” section of the Help Contents
• Code Coach: An Overview
• Interpreting CPU time in Source view

Getting Started: VTune 21

Static Assembly Code Analyzer

Use VTune’s Static Assembly Analyzer to disassemble the functions in
your Windows* 95/NT* binary files and analyze the performance
attributes of each assembly instruction at the processor level.

To invoke the Static Assembly analyzer:
1. Double-click on a function in the Code Analysis view or on a hotspot

in the Hotspot view.

2. If the source code is displayed, click on the View Assembly icon
on the source view toolbar.

VTune disassembles the function or hotspot and displays the assembly
instructions annotated with performance information.

Tips
• You can select a group of instructions and display summary

information about their performance in the status bar.
• To evaluate the performance of your application on other Intel

processors, select a CPU type from the pull-down menu on the
Assembly view status bar.

• From the Static Assembly view, you can invoke the Dynamic
Assembly Analyzer for fine-tuning a small section of your code.

• You can use the right mouse click on any column in the assembly
view to invoke the “What's this column” or the “What to do now”
help topics.

• To display a detailed description of the pairing and penalty issues
incurred by an assembly instruction, double-click on the instruction
and display the Advanced Instruction Analyzer.

 CAUTION. The percentage values displayed in the Time and Event
columns in the source views actually apply to other instructions in the
loop or block in question and not to the instruction next to which they are
displayed. For more information, please see “Interpreting Time and
Event Totals in the Assembly View” in the “Overviews” section of the
Help Contents.

22 Getting Started: VTune

 Related Online Help Topics

 Topics in the “Overviews” section of the Help Contents
• Static Assembly Analysis: An Overview
• Interpreting CPU time in the Assembly view

 Topics in the “How To” section of the Help Contents
• Dynamically Analyzing Assembly Code

Getting Started: VTune 23

 Dynamic Assembly Analyzer

 Use VTune’s Dynamic Assembly Analyzer to invoke a processor-specific
simulator to dynamically analyze and fine-tune a small section of your
application. You can invoke the Dynamic Analyzer from any of the
Source or Static Assembly Analysis views.

 NOTE. The Dynamic Assembly Analyzer currently supports the Pentium
and Pentium with MMX™ technology processors. It does not support
Pentium® Pro and Pentium II processors.

 To invoke the Dynamic Analyzer from the Source or Static
Assembly Analysis view:
• Use the Set Simulation Entry point icon and the Exit point icon

on the Source view toolbar to mark the range of assembly code you
want to simulate and analyze.

• Click on the Start Dynamic Simulation icon in the toolbar to
invoke the Dynamic Analyzer. A window will appear in which you
can set detailed parameters of the simulation before the simulation
actually starts.

 During Dynamic Analysis, VTune
• Executes your application full speed to the Entry point you specify.
• Single steps to trace execution flow to determine the exact sequence

of the executed instructions and their memory addresses.
• From the Entry point you specify, simulates performance on an

instruction-by-instruction basis.
• Identifies performance stalls and penalties associated with the

instructions such as instruction and data cache misses, BTB misses,
and misaligned data references.

• Combines this information with known architectural pairing rules and
restrictions and displays the information in the source window.

24 Getting Started: VTune

 Tips
• You can use the right mouse click on any column in the assembly

view to invoke the “What's this column” or the “What to do now”
help topics.

• To display a detailed description of the architectural and penalty
issues incurred by an assembly instruction, double-click on the
instruction to display information provided by the Advanced
Instruction Analyzer.

 Related Online Help Topics

 Topics in the “Overviews” section of the Help Contents
• Dynamic Analysis: An Overview
• Clock Counts in the Dynamic View

 Topics in the “How To” section of the Help Contents
• Dynamically Analyzing Assembly Code

	VTune Getting Started
	Disclaimer Information
	Contents
	VTune: An Overview
	Hardware Requirements
	Software Requirements
	Java* Environments Supported
	Installation
	Starting VTune
	The VTune Assistant
	Getting Online Help in VTune

	The VTune Project
	The Project Wizard
	Tips in the Project Wizard
	Tips on Managing Projects

	Key Features of VTune
	The Sampler
	Java Call Graph Profiling
	The Code Analyzer
	The Code Coach
	Static Assembly Code Analyzer
	Dynamic Assembly Analyzer

